Testing for COVID-19 is crucial to understand who is infected and therefore a risk to others by spreading the infection.
Number of people tested
4,623
4,623 people were tested between 1 to 254 times
Number of Tests
34,965
PCR Tests
14,296
Antibody Tests
We perform lateral flow antigen (LFA) tests, at least every two days for staff or when a visitor attends the clinic. We have also continued to test for antibodies to both infection and vaccine. By repeating these tests over time, we can establish how long the antibodies take to develop and how long immunity may last in each person.
This page provides a summary of our COVID-19 testing results, further details can be accessed by using the buttons shown below.
COVID-19 Test Results
PCR Test results
% Staff Positive Test Results
Staff | Average Age: 34 Years
Demographics
Female
Male
Visitors & Volunteers | Average Age: 41 Years
Demographics
Female
Male
Antibody Test results
Staff | Average Age: 34 Years
Visitors & Volunteers | Average Age: 41 Years
Antibody levels over time
One individual (purple line) showed a significant change at 171 days with detectable antibodies appearing for the first time, this is probably due to reinfection as 5 months after testing positive for COVID-19 by PCR for the first time, and subsequent negative PCR test results, the individual tested positive again by PCR. A second individual (light purple line) is showing detectable antibody levels for the first time at over 285 days since their first positive PCR test, this may also be due to reinfection. The level of antibodies for both individuals peaked around 4.5 and is now on the decline.
Summary of Results
11th October 2022:
The official confirmed UK COVID-19 daily case rate has shown an increase once more. On the 19th August 2022, 3,312 cases were reported compared to 6,441 reported on the 1st October 2022. The latest ONS survey (7th October 2022) estimates in the week ending 24th September 2022, 1,105,400 people in England alone had COVID-19 infection, equivalent to 2.03% of the entire population. The most prevalent variant continues to be BA.5 (87.8%). The overall proportion of other variants as tested by the relevant assay in England between the 11th-17th September 2022 was BA.2 (0.6%), BA.4 (2.1%), BA.2.75 (4.5%), BA.4.6 (4.5%) and 0.5% were classified as other. The risk of hospitalisation from disease appears to be the same for BA.4 and BA.5 compared to BA.2 (the previous dominant variant). Overall, the Omicron (BA.4 and BA.5) variants appear to be equal in disease severity than the previous dominant BA.2. Omicron preferentially infects the upper airways, increasing transmissibility, and struggles to infect lung tissue, which may be responsible for reducing severity. COVID hospitalisations have slightly increased, with 7,486 patients on 17thAugust 2022 testing positive for COVID-19 compared to 9,631 on 5th October 2022. Mechanical ventilation admission rates, reflecting the highest severity end of the disease, remain plateaued with 195 patients with COVID-19 in hospital on 5th October 2022. Deaths are around 420 patients per week recorded with COVID-19 on their death certificate. Recent changes in case rates will be reflected in deaths after approximately 3-4 weeks. Our results at RPL continue to show a lower positivity rate compared to the ONS survey data. With our methodology of screening all staff, this remains an accurate tracker for the true community prevalence of the virus. In week 132 since the pandemic began we have had a 0.35% peak positivity rate.
We continue to use the Abbott CMIA test being used to measure levels of antibodies against the virus nucleocapsid and the Roche Elecsys®Anti-SARS-CoV-2 S assay which detects antibodies against the virus spike protein, as we want to be able to detect both natural and vaccine generated immunity. Our recent publication shows that individuals who have been infected with SARS-CoV-2 previously develop higher antibody levels following vaccination, with either the Pfizer/BioNTech or Oxford/AstraZeneca vaccine, in comparison to naive individuals who have not been infected with SARS-CoV-2 prior to vaccination1. Watch the animation summarising these findings. For more information about this clinical trial, registered atClinicalTrials.gov visit: (NCT04404062). This concurs with studies of healthcare workers at St Bartholomew’s Hospital and Imperial College Healthcare NHS Trust, where individuals previously infected with SARS-CoV-2 developed peak antibody levels 140-fold higher than individuals with no previous infection following vaccination with the Pfizer/BioNTechvaccine2,3
Our recent publication ‘Why the SARS-CoV-2 antibody test results may be misleading: insights from a longitudinal analysis of COVID-19’ shows our results align with the study led by Imperial College reporting antibodies levels decline significantly over four months post infection7,8,9,10. Currently we are trying to understand more about the kinetics of antibody responses post vaccination and the relative protection to future infection and hope to publish this data soon.
Updated on 11th October 2022
Overview of the COVID-19 tests
Since the pandemic began we have used six different tests, including: a Polymerase Chain Reaction (PCR) test, a COVID-19 Rapid Antibody Test, a Chemiluminescent Microparticle Immunoassay (CMIA) test, an electrochemiluminescence immunoassay (ECLIA) and a microscopic holographic imaging and artificial intelligence (AI) software technology. Lateral flow antigen nasal swabs.
By using different tests, we can determine whether a person is currently infected with the COVID-19 virus or if they previously had the virus. This is important because many people may not develop any symptoms after becoming infected and thus may not be aware that they are spreading the virus.
View more info about each test using the plus symbols below:
Quick Links
Polymerase Chain Reaction (PCR)
The PCR test is currently a gold standard to check for COVID-19 infections. It measures whether SARS-CoV-2 genetic material is present in a person’s system. At Richmond Research Institute, we take throat swab samples and can produce PCR test results within just 20 minutes.
We are using the Menarini Fast Point-of-care RT-PCR test. For positive cases, we also send a sample to be verified by an independent laboratory. This allows us to check for false positive results.
Rapid Antibody Test
The COVID-19 Rapid Antibody test, known as the RAPG-COV-019 kit by Biopanda, indicates whether someone has had the SARS-CoV-2 virus and is potentially immune. It measures Immunoglobulin G (IgG) and Immunoglobulin M (IgM) - antibodies produced by the body as it fights the virus.
Usually, it takes five to 10 days for these antibodies to become measurable in blood. Over time, IgM levels will drop, while IgG levels will increase and peak at around 30 days. This allows us to measure if people had a corona virus infection. The challenge with these tests is that they are not sensitive or specific; therefore, another corona virus infection may cause a positive test result.
By using the RAPG-COV-019 antibody test kit on finger prick blood samples we can generate results within 10 minutes.
Chemiluminescent Microparticle Immunoassay (CMIA)
The Abbott Laboratories chemiluminescent microparticle immunoassay (CMIA) works by binding to SARS-CoV-2-specific IgG antibodies in a blood sample. Upon binding to IgG, a luminescent signal is generated, which can be measured and is directly proportional to the concentration of SARS-CoV-2-specific IgG antibodies.
This test detects antibodies to the SARS-CoV-2 nucleocapsid protein. With the introduction of vaccination we have introduced another test which detects antibodies to the SARS-CoV-2 spike protein to run in parallel with the CMIA test. We made this change because the Oxford/AstraZeneca and Pfizer/BioNTech vaccines generate antibodies to the spike protein and we want to be able to detect both natural and vaccine generated immunity.
Richmond Research Institute is continuously evaluating new test methods that produce fast and accurate results.
Microscopic Holographic Imaging
The Virolens system was developed in response to surging demand for rapid COVID-19 screening devices. It is a microscopic holographic imaging and AI software technology. The Virolens system works by using a digital camera that is attached to a microscope to analyse saliva samples. The data obtained from a sample is then run through a computer system that is trained by AI to identify the unique pattern of the virus from other cells. A result is available in only 20 seconds.
Electrochemiluminescence Immunoassay (ECLIA)
The Roche Elecsys® Anti-SARS-CoV-2 S assay is an electrochemiluminescence immunoassay (ECLIA) for the quantitative determination of antibodies (including IgG) to the SARS-CoV-2 spike (S) protein in human blood samples.
Continuous Development
We continue to actively source new point of care tests which are simple, fast, and can be administered frequently. The ability to identify infectious individuals quickly is essential to ensure normality is restored.
Study Background
Working with our partner organisation, Richmond Pharmacology Limited (RPL), the initial emphasis of our COVID-19 response was on staff, clinical trial volunteers, and visitor safety.
At RPL’s London Bridge clinical trial facility which we use for our studies, RPL acted quickly and responsibly to mitigate the risks, implementing strict entry control measures for access to the research unit, evaluating key indicators such as symptom scores, body temperature, travel history, and contact tracing for anyone entering the building. The wearing of masks inside the research unit is mandatory and the number of people on site is limited to enable social distancing.
The testing regime is key as it is well-known that COVID-19 can be transmitted by asymptomatic carriers11 and vaccinated individuals
References:
- Can a second booster dose be delayed in patients who have had COVID-19?
- Antibody response to first BNT162b2 dose in previously SARS-CoV-2-infected individuals
- Effect of previous SARS-CoV-2 infection on humoral and T-cell responses to single-dose BNT162b2 vaccine
- Reinfection with SARS-CoV-2: Implications for Vaccines
- SARS-CoV-2 reinfection and implications for vaccine development
- COVID reinfections are unusual — but could still help the virus to spread
- Covid.joinzoe: COVID Symptom Study
- GOV.UK: Coronavirus (COVID-19) in the UK
- COVID-19 Surveillance Report
- Why the SARS-CoV-2 antibody test results may be misleading: insights from a longitudinal analysis of COVID-19
- National Center for Biotechnology Information
- The Lancet: Peer Reviewed Journal
- JAMA Network: Open Access Medical Journal
We have a track record in conducting clinical research.
We present our scientific findings at meetings.
Our academic research helps improve lives and strengthens scientific insights.